
LAKSHMI NARAIN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 1

LAKSHMI NARAIN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 2

Lakshmi Narain College of Technology Excellence

Department of Computer Science and Engineering

LLaabb MMaannuuaall

SSuubbjjeecctt NNaammee:: Basic Computer Engineering

CCoouurrssee CCooddee:: BT205

CCoouurrssee:: BB..TTeecchh

SSeessssiioonn:: 22002233--2244

PPrreeppaarreedd BByy

LAKSHMI NARAIN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 3

TTAABBLLEE OOFF CCOONNTTEENNTT

Sr. No. Particulars Page No.

1 Vision and Mission of the Institute 4

2 Course Outcome & Course Articulation
Matrix

5

3 Program Outcomes 7-8

4 Program Specific Outcomes 9

5 Program Educational Objectives 9

6 List of Experiments 9

7 Experiments and Expected Viva Voce

questions

10-61

LAKSHMI NARAIN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 4

Vision and Mission of the Institute

Vision of the institute

To become a pioneer institute in technical education and innovations to build

competent technocrats and leaders for the nation.

Mission of the institute

M1. To enhance the academic environment with innovative teaching

learning processes and modern tools.

M2. To Practice and nurture high standards of human values,

transparency and accountability.

M3. To collaborate with other academic and research institutes as well as

industries in order to strengthen education and research.

M4. To uphold skill development for employability and entrepreneurship for
interdisciplinary research and innovations.

LAKSHMI NARAIN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 5

Vision and Mission of the Department

Vision of the Department

To be a centre of excellence for providing quality technical education to

develop future leaders with the aspects of research & computing, Software

product development and entrepreneurship.

Mission of the Department

Mission No. Mission Statements

M1

To offer academic program with state of art
curriculum having flexibility for
accommodating the latest developments in
the areas of computer science engineering.

M2

To conduct research and development
activities in contemporary and emerging
areas of computer science & engineering.

M3

To inculcate moral values & entrepreneurial
skills to produce professionals capable of
providing socially relevant and sustainable
solutions.

LAKSHMI NARAIN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 6

COURSE OUTCOMES: BT205 – Basic Computer Engineering

CO205.1 Illustrate basic commands and operations in operating system

CO205.2 Implement basic programming concepts with C++.

CO205.3 Understand various object oriented features like polymorphism,

inheritance, object, classes.

CO205.4 Study and analyze OSI models as well as computer security issues.

CO205.5 Learn and illustrate DBMS fundamental concepts.

Course Articulation Matrix

PO

CO

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1

0

PO1

1

PO12

CO205.1 3 3 3 3 - 1 - 1 2 1 - 3

CO205.2 3 3 3 3 - 1 - - 2 1 - 3

CO205.3 3 2 3 3 - 1 - - 1 1 1 3

CO205.4 3 3 3 3 - 1 - 1 2 1 - 3

CO205.5 3 3 3 3 1 1 - - 2 1 1 3

 3 2.8 3 3 1 1 - 1 1.8 1 1 3

LAKSHMI NARAIN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 7

Program Outcomes as defined by NBA (PO)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

LAKSHMI NARAIN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 8

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one9s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

LAKSHMI NARAIN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 9

Department of Computer Science and Engineering

Program Specific Outcomes (PSO)

A graduate of Computer Science and Engineering Program will develop

PSO1: An ability to apply technical knowledge of computer science and engineering

fundamentals to become employable in industry.

PSO2: An ability to develop programming skills using modern software tools and

techniques.

PSO3: An ability to develop real time projects for problem solving of domains such as

Machine Learning, Cyber security, block chain and big data.

PSO4: An ability to grab research, higher studies and entrepreneurship opportunities

towards society with moral values and ethics.

Department of Computer Science and Engineering

Program Educational Objectives (PEO):

PEO 1: Evolve as globally competent computer professionals, researchers and

entrepreneurs possessing collaborative and leadership skills, for developing innovative

solutions in multidisciplinary domains.

PEO 2: Excel as socially committed computer engineers having mutual respect, effective

communication skills, high ethical values and empathy for the needs of society.

PEO 3: Involve in lifelong learning to foster the sustainable development in the emerging

areas of technology

LAKSHMI NARAIN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 10

Department of Computer Science and Engineering

BBaassiicc CCoommppuutteerr EEnnggiinneeeerriinngg ((BBTT220055))

List of Program to be performed: -

Lab No. List of Program CO

Covered

1 Study and Practice Internal and External DOS commands. (CO1)

2 Study and Practice of MS windows-Folder related operations, My computer,

Window Explore, Control Panel

(CO1)

3 Creating and operating of spreadsheet using MS Excel (CO1)

4 Creation and manipulation of database table using SQL in MS-Access (CO1)

5 WAP to illustrate various arithmetic functions using functions like

add(),sub(),multi(), div() etc.

(CO1)

6 WAP to take 10 numbers in any array and print sum of that numbers. (CO2)

7 WAP to add two numbers using function (CO2)

8 WAP using class to illustrate concept of Constructor and Destructor. Also try

to use scope resolution program

(CO3)

9 WAP to implement operator overloading like <+= operator. (CO3)

10 WAP to implement runtime polymorphism. (CO3)

11 Study and analyze OSI models as well as computer security issues (CO4)

12 Creating and manipulation of Database table using SQL in MS Access. (CO5)

LAKSHMI NARAIN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 11

Basic Computer Engineering BT205

Computer engineering is a multidisciplinary field that integrates principles from electrical

engineering and computer science to design, develop, and optimize computer systems. At its core, it

involves understanding digital logic circuits, encompassing basic logic gates and more complex structures.

Computer architecture plays a pivotal role, exploring the organization of key components such as the

Central Processing Unit (CPU), memory, and input/output devices. Proficiency in programming languages,

including high-level ones like C++, Java, or Python, is essential. Operating systems knowledge is crucial,

covering processes, memory management, and file systems. Additionally, computer engineers delve into

computer networks, studying protocols, routing, and layers. Data structures and algorithms form

fundamental building blocks for efficient software development. Knowledge of embedded systems, VLSI

for integrated circuits, and computer security principles further enriches the skill set. As technology

evolves, areas like digital signal processing and computer graphics become increasingly relevant. The

dynamic nature of computer engineering requires continuous learning and adaptation to stay abreast of

advancements in this rapidly evolving field.

OOPs Concepts:

• Class

• Objects

• Data Abstraction

• Encapsulation

• Inheritance

• Polymorphism

• Dynamic Binding

• Message Passing

LAKSHMI NARAIN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 12

EXPERIMENT-1

 Aim: Study and practice of Internal & External DOS commands.

The study and practice of DOS (Disk Operating System) commands involve understanding and utilizing

commands to interact with the computer's operating system. DOS commands can be categorized into

internal and external commands.

Internal Commands:

Internal commands are built into the command interpreter (usually COMMAND.COM or CMD.EXE in

Windows). They don't require separate executable files and are directly interpreted by the command shell.

Some common internal commands include:

1. DIR: Displays a list of files and subdirectories in a directory.

2. CD (or CHDIR): Changes the current directory.

3. CLS: Clears the screen.

4. COPY: Copies one or more files to another location.

5. DEL (or ERASE): Deletes one or more files.

6. REN (or RENAME): Renames a file or directory.

7. TYPE: Displays the contents of a text file.

8. MKDIR (or MD): Creates a new directory.

9. RMDIR (or RD): Removes a directory.

10. DATE: Displays or sets the date.

External Commands:

External commands are separate executable files stored in directories listed in the PATH environment

variable. These commands extend the functionality of the operating system. Examples of external

commands include:

1. FORMAT: Prepares a disk for use by an operating system.

2. CHKDSK: Checks a disk for errors and fixes them.

3. XCOPY: Copies files and directory trees with more options than the COPY command.

4. DISKPART: Manages disk partitions on a hard drive.

5. PING: Tests network connectivity.

6. IPCONFIG: Displays network configuration information.

7. TASKKILL: Terminates processes or applications by name or process ID.

8. TREE: Displays the structure of a directory or path graphically.

LAKSHMI NARAIN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 13

9. EDIT: Opens a simple text editor for creating or editing text files.

To practice DOS commands, you can open the Command Prompt on a Windows system and start

experimenting with these commands. Use the help command followed by a specific command to get more

information about its usage and options. Additionally, online resources and tutorials can provide hands-on

exercises and scenarios to enhance your understanding of DOS commands and their practical applications

Viva Voce questions-

• How can DOS commands be used in batch files for automation?

• Demonstrate how to use the DIR command to list files in a specific directory.

• Explain the functionality of the FORMAT command in DOS.

• How does the XCOPY command differ from the internal COPY command?

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 14

EXPERIMENT-2

Aim: Study and Practice of MS windows – Folder related operations, My-Computer, window

explorer, Control Panel

My Computer, Windows Explorer, and Control Panel is essential for effective navigation and

management in a Windows environment.

1. Folder Related Operations

• Creating a New Folder

Right-click in the desired location.

Choose "New" and then "Folder=.

Give the folder a name.

• Renaming a Folder:

Right-click on the folder

Select "Rename" and type the new name.

• Copying and Moving Folders

Use "Ctrl + C" to copy and "Ctrl + V" to paste.

Alternatively, use the right-click context menu for "Copy" and "Paste."

For moving, you can either drag and drop or use "Cut" and "Paste."

• Deleting a Folder

Right-click on the folder.

Select "Delete" or use the "Delete" key.

2. My Computer:

• Accessing My Computer:

On the desktop, double-click the "My Computer" or "Computer" icon.

Alternatively, press "Windows key + E" to open Windows Explorer to the "Computer" view.

• Viewing Drives and Storage:

Displays all available drives (hard drives, SSDs, external drives).

Shows storage space and provides quick access to drive contents.

• Mapping Network Drives:

Right-click on a network drive.

Select "Map Network Drive" to assign a drive letter.

3. Windows Explorer:

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 15

Figure 1: Window Explore

• Navigating Through Folders:

Use the left pane for navigation.

Double-click folders to enter them.

• Searching for Files:

Use the search bar in the top-right corner.

Enter file names or keywords to find files quickly

• Sorting and Arranging Files:

Click on column headers to sort files (name, date, size).

Use the "View" tab to arrange files by details, tiles, icons, etc.

• Accessing Quick Access:

Quick Access shows frequently accessed folders and recent files.

4. Control Panel:

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 16

Figure 2: Control Panel

• Accessing Control Panel:

Open the Start menu and select "Control Panel.=

In Windows 10 and later, you can also use the Settings app.

• Changing System Settings:

Adjust system settings, such as display resolution, power options, etc

Access "System and Security" for firewall, antivirus, and maintenance settings.

• Managing User Accounts:

Add or remove user accounts.

Modify account settings, passwords, and permissions.

• Installing/Uninstalling Programs:

Access "Programs" or "Programs and Features" to install or uninstall software.

Viva Voce Questions-

• Explain the steps to create a new folder on the desktop.

• Differentiate between Windows Explorer and My Computer.

• What is the Control Panel, and why is it important in Windows?

• How do you troubleshoot common issues using the Control Panel?

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 17

EXPERIMENT-3

Aim: Creation and operating of spreadsheet using MS-Excel

Creating and operating a spreadsheet in Microsoft Excel involves several steps.

Figure 5: Terms used in MS-Excel

Open Microsoft Excel

Launch Microsoft Excel on your computer

Create a New Workbook

You'll typically start with a new workbook, which is like a container for your spreadsheet.

File > New > Blank Workbook

Understanding the Excel Interface

Familiarize yourself with the Excel interface, including the Ribbon, Cells, Columns, Rows, and

Sheets.

Enter Data

Click on a cell and start typing to enter data

You can use the Tab key to move to the next cell or Enter to move down

Formatting Cells

You can format cells by changing font size, color, alignment, and more.

Right-click on a cell or use the options in the Ribbon (Home tab) for formatting.

Managing Rows and Columns

Inserting Rows/Columns: Right-click on a row/column header and choose "Insert."

Deleting Rows/Columns: Right-click on a row/column header and choose "Delete."

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 18

Formulas and Functions

Use formulas to perform calculations

Type a formula in a cell, e.g., =A1+B1, and press Enter

Explore functions (e.g., SUM, AVERAGE) from the "Formulas" tab.

Autofill

Drag the fill handle (a small square at the bottom right of the selected cell) to copy data or create a

series

Cell References

Understand relative (A1), absolute (A1), and mixed (A$1, $A1) cell references in formulas.

Charts and Graphs

Highlight data and go to the "Insert" tab to create charts or graphs.

Sorting and Filtering

Use the "Sort" and "Filter" options (Home tab) to organize and analyze data.

Data Validation

Restrict the type of data that can be entered in a cell using data validation.

Protecting Sheets and Workbooks

Password-protect sheets or the entire workbook to prevent unauthorized changes.

Saving Your Workbook

Save your work regularly using Ctrl + S or File > Save.

Printing

Use the "Print" option (File > Print) to print your spreadsheet.

Excel Shortcuts

Learn some useful keyboard shortcuts to speed up your work.

Viva Voce Questions-

• Differentiate between a formula and a function in Excel.

• What is the purpose of the SUM function? Can you provide an example?

• How do you create a bar chart in Excel?

• How can you password-protect a worksheet in Excel?

• Explain the concept of relative and absolute cell references.

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 19

EXPERIMENT-4

Aim: Creation and manipulation of database table using SQL in MS-Access.

Creating and manipulating database tables using SQL in Microsoft Access involves various SQL

commands.

Figure 6: Terms used in MS-Access

Creating a Table

Open Microsoft Access

Launch Microsoft Access on your computer.

Create a New Database

Click on "File" > "New" > "Blank Database" to create a new database

Create a New Table

Go to the "Table Design" view to manually create a table.

Define the fields (columns) and their data types

Figure 7: Create table in SQL

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 20

Save the Table

Save the table by giving it a name and clicking on the "Save" button

SQL Commands for Table Creation

-- Example: Creating a table named "Employees"

CREATE TABLE Employees (

 EmployeeID INT PRIMARY KEY,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

 BirthDate DATE,

 Department VARCHAR(50)

);

Manipulating Data

Inserting Data

Use the INSERT INTO statement to add data to the table

-- Example: Inserting data into the "Employees" table

INSERT INTO Employees (EmployeeID, FirstName, LastName, BirthDate, Department)

VALUES (1, 'John', 'Doe', '1990-01-15', 'IT');

Figure 8: Inserting table in SQL

Selecting Data

Use the SELECT statement to retrieve data from the table

-- Example: Selecting all data from the "Employees" table

SELECT * FROM Employees;

Updating Data

Use the UPDATE statement to modify existing data in the table.

-- Example: Updating the department for employee with ID 1

UPDATE Employees

SET Department = 'Finance'

WHERE EmployeeID = 1;

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 21

Deleting Data

Use the DELETE FROM statement to remove data from the table

-- Example: Deleting an employee with ID 1 from the "Employees" table

DELETE FROM Employees

WHERE EmployeeID = 1;

SQL Commands for Data Manipulation:

-- Inserting data

INSERT INTO Employees (EmployeeID, FirstName, LastName, BirthDate, Department)

VALUES (2, 'Jane', 'Smith', '1985-05-20', 'HR');

-- Selecting data

SELECT * FROM Employees;

-- Updating data

UPDATE Employees

SET BirthDate = '1988-11-30'

WHERE EmployeeID = 2;

-- Deleting data

DELETE FROM Employees

WHERE EmployeeID = 2;

Relationships and Constraints

Defining Relationships

Use the Relationships window to establish relationships between tables.

Applying Constraints

Apply constraints like PRIMARY KEY, FOREIGN KEY, NOT NULL, etc., during table creation

-- Example: Adding a FOREIGN KEY constraint

CREATE TABLE Departments (

 DepartmentID INT PRIMARY KEY,

 DepartmentName VARCHAR(50)

);

CREATE TABLE Employees (

 EmployeeID INT PRIMARY KEY,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 22

 BirthDate DATE,

 DepartmentID INT,

 FOREIGN KEY (DepartmentID) REFERENCES Departments(DepartmentID)

);

Viva Voce Questions-

• Write an SQL query to insert a new customer record into a table named "Customers=

• Explain the purpose of the WHERE clause in SQL queries for data manipulation

• Explain the process of updating data in a table using SQL. Provide an example.

• Explain the purpose of the WHERE clause in SQL queries for data manipulation

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 23

EXPERIMENT-5

Aim:- WAP to illustrate Arithmetic expressions

Arithmetic expressions involve mathematical operations on numeric values. These expressions follow

the rules of arithmetic and can include addition, subtraction, multiplication, division, modulus

(remainder), and exponentiation

Addition (+)

Adds two values together

Example: a + b

Subtraction (-):

Subtracts the second value from the first

Example: a – b

Multiplication (*):

Multiplies two values

Example: a * b

Division (/):

Divides the first value by the second.

Example: a / b

Integer Division (//):

Performs division and truncates the result to the nearest integer.

Example: a // b

Modulus (%):

Returns the remainder after division.

Example: a % b

**Exponentiation (^ or):

Raises the first value to the power of the second

Example: a ^ b or a ** b

Program

#include<iostream>

using namespace std;

int main() {

 // Arithmetic Expressions Illustration

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 24

 // Addition

 int num1 = 10;

 int num2 = 5;

 int sum_result = num1 + num2;

 cout << "Addition: " << num1 << " + " << num2 << " = " << sum_result << endl;

 // Subtraction

 int sub_result = num1 - num2;

 cout << "Subtraction: " << num1 << " - " << num2 << " = " << sub_result << endl;

 // Multiplication

 int mul_result = num1 * num2;

 cout << "Multiplication: " << num1 << " * " << num2 << " = " << mul_result << endl;

 // Division

 double div_result = static_cast<double>(num1) / num2; // Ensuring a floating-point result

 cout << "Division: " << num1 << " / " << num2 << " = " << div_result << endl;

 // Integer Division

 int int_div_result = num1 / num2;

 cout << "Integer Division: " << num1 << " / " << num2 << " = " << int_div_result << endl;

 // Modulus (Remainder)

 int mod_result = num1 % num2;

 cout << "Modulus: " << num1 << " % " << num2 << " = " << mod_result << endl;

 // Exponentiation

 int exp_result = 1;

 for (int i = 0; i < num2; ++i) {

 exp_result *= num1;

 }

 cout << "Exponentiation: " << num1 << " ^ " << num2 << " = " << exp_result << endl;

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 25

 return 0;

}

Ouput:

Addition: 10 + 5 = 15

Subtraction: 10 - 5 = 5

Multiplication: 10 * 5 = 50

Division: 10 / 5 = 2

Integer Division: 10 / 5 = 2

Modulus: 10 % 5 = 0

Exponentiation: 10 ^ 5 = 100000

Viva Voce Questions-

• Explain the order of operations in arithmetic expressions.

• Explain the purpose of the subtraction operator (-) in arithmetic.

• In what scenarios would you use parentheses in an arithmetic expression?

• Describe the function of the division operator (/) in arithmetic.

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 26

EXPERIMENT-6

Aim: WAP to illustrate Arrays

An array is a data structure consisting of a collection of elements (values or variables), of same memory

size, each identified by at least one array index or key. An array is stored such that the position of each

element can be computed from its index tuple by a mathematical formula. Arrays are fundamental data

structures used in programming to store a collection of elements of the same data type. These elements

are stored in contiguous memory locations, and each element is accessed using an index or a key. The

concept of arrays is widely used across various programming languages.

Steps:-

• Declares an array named numbers with five integer elements.

• Prints the elements of the array using a loop.

• Calculates the sum of all elements in the array.

• Finds the maximum element in the array.

Program

#include <iostream>

using namespace std;

int main() {

 // Illustrating Arrays in C++

 // Declaration and Initialization

 int numbers[5] = {10, 20, 30, 40, 50};

 // Accessing and Printing Array Elements

 cout << "Array Elements: ";

 for (int i = 0; i < 5; ++i) {

 cout << numbers[i] << " ";

 }

 cout << endl;

 // Summing Array Elements

 int sum = 0;

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 27

 for (int i = 0; i < 5; ++i) {

 sum += numbers[i];

 }

 cout << "Sum of Array Elements: " << sum << endl;

 // Finding the Maximum Element

 int maxElement = numbers[0];

 for (int i = 1; i < 5; ++i) {

 if (numbers[i] > maxElement) {

 maxElement = numbers[i];

 }

 }

 cout << "Maximum Element: " << maxElement << endl;

 return 0;

}

Output:

Array Elements: 10 20 30 40 50

Sum of Array Elements: 150

Maximum Element: 50

Viva Voce Questions-

• Explain the concept of indexing in arrays.

• How do you declare an array in C++? Provide an example.

• How do you declare and initialize a two-dimensional array in C++?

• How can you create an array of user-defined data types in C++?

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 28

EXPERIMENT-7

Aim:- WAP to illustrate functions.

Functions:- A function is a block of code which only runs when it is called.

Functions are used to perform certain actions, and they are important for reusing code: Define the code

once, and use it many times.

Create a Function

C++ provides some pre-defined functions, such as main(), which is used to execute code.

Syntax

 void myFunction() {

 // code to be executed

}

Program

#include <iostream>

// Function to calculate the square of a number

double calculateSquare(double number) {

 double square = number * number;

 return square;

}

// Function to print the square of a number

void printSquare(double number) {

 double square = calculateSquare(number);

 std::cout << "The square of " << number << " is: " << square << std::endl;

}

// Main program

int main() {

 // Get user input for a number

 std::cout << "Enter a number: ";

 double userInput;

 std::cin >> userInput;

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 29

 // Call the printSquare function to calculate and print the square

 printSquare(userInput);

 return 0;

}

Output:

Enter a number: 12

The square of 12 is: 144

In this example

The calculateSquare function takes a number as an argument, calculates its square, and returns the

result.

The printSquare function takes a number, calls calculateSquare to get the square, and then prints the

result using std::cout.

The main program takes user input for a number and calls the printSquare function to calculate and

display the square.

Viva Voce Questions-

• Explain the components of a function definition.

• What is a parameter in a function?

• Explain the concept of a default argument in C++.

• Explain the difference between pass by value and pass by reference.

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 30

EXPERIMENT-8

Aim: WAP to illustrate constructor & Destructor

Constructor: - Constructor in C++ is a special method that is invoked automatically at the time of

object creation. It is used to initialize the data members of new objects generally. The constructor in

C++ has the same name as the class or structure. It constructs the values i.e. provides data for the object

which is why it is known as constructor.

Constructor is a member function of a class, whose name is same as the class name.

• Constructor is a special type of member function that is used to initialize the data members for an

object of a class automatically, when an object of the same class is created.

• Constructor is invoked at the time of object creation. It constructs the values i.e. provides data for the

object that is why it is known as constructor.

• Constructor do not return value, hence they do not have a return type.

The prototype of the constructor looks like

 <class-name> (list-of-parameters);

Destructor :- Destructor is an instance member function that is invoked automatically whenever an

object is going to be destroyed. Meaning, a destructor is the last function that is going to be called before

an object is destroyed.

• A destructor is also a special member function like a constructor. Destructor destroys the class

objects created by the constructor.

• Destructor has the same name as their class name preceded by a tilde (~) symbol.

• It is not possible to define more than one destructor.

• The destructor is only one way to destroy the object created by the constructor. Hence destructor

can-not be overloaded.

• Destructor neither requires any argument nor returns any value.

• It is automatically called when an object goes out of scope.

• Destructor release memory space occupied by the objects created by the constructor.

• In destructor, objects are destroyed in the reverse of an object creation.

The syntax for defining the destructor within the class:

~ <class-name>() {

 // some instructions

}

The syntax for defining the destructor outside the class:

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 31

<class-name> :: ~<class-name>() {

 // some instructions

}

Program

#include <iostream>

class MyClass {

public:

 // Constructor

 MyClass() {

 std::cout << "Constructor called" << std::endl;

 }

 // Destructor

 ~MyClass() {

 std::cout << "Destructor called" << std::endl;

 }

 // Other member functions or variables can be added here

};

int main() {

 // Creating an object of MyClass

 MyClass myObject;

 // You can perform other operations with myObject here

 // Destructor will be called when myObject goes out of scope

 return 0;

}

In this example

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 32

The MyClass class has a constructor, denoted by the same name as the class, and a destructor,

denoted by a tilde (~) followed by the class name.

In the main function, an object myObject of type MyClass is created. When the object is created, the

constructor is called, and when it goes out of scope (at the end of the main function), the destructor is

called.

Output

Constructor called

Destructor called

Viva Voce Questions-

• How is a constructor different from other member functions?

• What is a destructor?

• How is the order of constructor and destructor calls determined?

• Why might you need a copy constructor?

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 33

EXPERIMENT-9

Aim: WAP to illustrate Operator overloading

Operator overloading :- C++ has the ability to provide the operators with a special meaning for a data

type, this ability is known as operator overloading. Operator overloading is a compile-time

polymorphism. For example, we can overload an operator 8+9 in a class like String so that we can

concatenate two strings by just using +. Other example classes where arithmetic operators may be

overloaded are Complex Numbers, Fractional Numbers, Big integers, etc

Program

#include <iostream>

class Complex {

private:

 double real;

 double imag;

public:

 // Constructor

 Complex(double r = 0.0, double i = 0.0) : real(r), imag(i) {}

 // Overloading the '+' operator to add two complex numbers

 Complex operator+(const Complex& other) const {

 return Complex(real + other.real, imag + other.imag);

 }

 // Overloading the '-' operator to subtract two complex numbers

 Complex operator-(const Complex& other) const {

 return Complex(real - other.real, imag - other.imag);

 }

 // Overloading the '*' operator to multiply two complex numbers

 Complex operator*(const Complex& other) const {

 return Complex(

 real * other.real - imag * other.imag,

 real * other.imag + imag * other.real

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 34

);

 }

 // Overloading the '==' operator to compare two complex numbers

 bool operator==(const Complex& other) const {

 return (real == other.real) && (imag == other.imag);

 }

 // Display the complex number

 void display() const {

 std::cout << real << " + " << imag << "i" << std::endl;

 }

};

int main() {

 // Creating two complex numbers

 Complex complex1(2.0, 3.0);

 Complex complex2(1.0, 4.0);

 // Adding two complex numbers using operator overloading

 Complex sum = complex1 + complex2;

 // Subtracting two complex numbers using operator overloading

 Complex difference = complex1 - complex2;

 // Multiplying two complex numbers using operator overloading

 Complex product = complex1 * complex2;

 // Comparing two complex numbers using operator overloading

 bool isEqual = (complex1 == complex2);

 // Displaying the results

 std::cout << "Sum: ";

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 35

 sum.display();

 std::cout << "Difference: ";

 difference.display();

 std::cout << "Product: ";

 product.display();

 std::cout << "Are complex1 and complex2 equal? " << (isEqual ? "Yes" : "No") << std::endl;

 return 0;

}

Output:

Sum: 3 + 7i

Difference: 1 + -1i

Product: -10 + 11i

Are complex1 and complex2 equal? No

In this example:

The Complex class represents complex numbers with real and imaginary parts.

Operator overloading is used for +, -, *, and == operators

The display function is used to print the complex number.

Viva Voce Questions-

• What is operator overloading in C++

• Can you provide an example of overloading the equality (==) operator

• What is the difference between a binary and a unary operator in the context of operator

overloading?

• Can operators be overloaded as static member functions?

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 36

EXPERIMENT-10

Aim:- WAP to implement runtime polymorphism

Runtime polymorphism, also known as dynamic polymorphism or late binding, is a concept in

object-oriented programming (OOP) where the method or function that gets executed is determined

at runtime rather than at compile time. This is achieved through the use of virtual functions or

abstract classes.

Inheritance: First, there needs to be a relationship between classes, typically through inheritance.

In OOP, you have a base class (or interface in some languages) and one or more derived classes that

inherit from the base class.

Program

class Animal {

public:

 virtual void makeSound() {

 cout << "Generic animal sound" << endl;

 }

};

class Dog : public Animal {

public:

 void makeSound() override {

 cout << "Woof!" << endl;

 }

};

Virtual Function: The base class should declare at least one virtual function. In the example above,

makeSound() is declared as a virtual function in the Animal class.

Override in Derived Classes: In the derived class (Dog in this case), the virtual function is

overridden to provide a specific implementation for that class.

Pointer or Reference to Base Class: You can use a pointer or reference of the base class type to

refer to objects of the derived class. This allows for dynamic method binding.

Animal* myAnimal = new Dog();

myAnimal->makeSound(); // Calls Dog's makeSound() at runtime

The use of virtual functions enables the compiler to defer the method resolution until runtime,

making it possible to achieve polymorphic behavior. This is particularly useful in scenarios where

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 37

you want to write code that can work with objects of multiple derived types through a common

interface.

Viva Voce Questions-

• What is polymorphism?

• What are the advantages of polymorphism?

• Explain types of polymorphism?

• How does polymorphism differ from function overloading in C++?

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 38

EXPERIMENT-11

Aim: - Study and analyse OSI models as well as computer security issues

The OSI (Open Systems Interconnection) model is a conceptual framework that standardizes the

functions of a telecommunication or computing system into seven abstraction layers. These layers,

from the physical transmission of bits to the user interface, include the Physical, Data Link,

Network, Transport, Session, Presentation, and Application layers. The model facilitates

interoperability between different systems by providing a clear and modular structure for

understanding and designing network protocols and communication processes

In the context of computer security, the OSI model plays a crucial role in identifying potential

vulnerabilities and implementing security measures across various layers. Each layer presents

distinct security challenges. The Physical layer may involve securing physical access to network

components, while the Data Link and Network layers focus on preventing unauthorized access and

ensuring secure data transmission. The Transport layer addresses end-to-end communication

security through encryption and authentication mechanisms. The Session, Presentation, and

Application layers deal with application-level security, including secure data presentation, user

authentication, and application-specific vulnerabilities.

Security issues in computer systems often span multiple layers, and a comprehensive approach is

essential to ensure robust protection. Common security concerns include unauthorized access, data

interception, tampering, and denial-of-service attacks. Implementing encryption protocols, firewalls,

intrusion detection systems, and secure coding practices are vital strategies to mitigate these risks.

Additionally, ongoing security awareness, regular updates, and adherence to best practices

contribute to building a resilient defense against evolving cyber threats. As technology advances,

the OSI model remains a valuable tool for analyzing and addressing security issues in a systematic

and layered manner.

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 39

Figure 9: OSI Model

Seven layers of the OSI model

Physical layer

The physical layer refers to the physical communication medium and the technologies to transmit data
across that medium. At its core, data communication is the transfer of digital and electronic signals
through various physical channels like fiber-optic cables, copper cabling, and air. The physical layer
includes standards for technologies and metrics closely related with the channels, such as Bluetooth,
NFC, and data transmission speeds.

Data link layer

The data link layer refers to the technologies used to connect two machines across a network where the
physical layer already exists. It manages data frames, which are digital signals encapsulated into data
packets. Flow control and error control of data are often key focuses of the data link layer. Ethernet is an
example of a standard at this level. The data link layer is often split into two sub-layers: the Media
Access Control (MAC) layer and Logical Link Control (LLC) layer.

Network layer

The network layer is concerned with concepts such as routing, forwarding, and addressing across a
dispersed network or multiple connected networks of nodes or machines. The network layer may also

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 40

manage flow control. Across the internet, the Internet Protocol v4 (IPv4) and IPv6 are used as the main
network layer protocols.

Transport layer

The primary focus of the transport layer is to ensure that data packets arrive in the right order, without
losses or errors, or can be seamlessly recovered if required. Flow control, along with error control, is
often a focus at the transport layer. At this layer, commonly used protocols include the Transmission
Control Protocol (TCP), a near-lossless connection-based protocol, and the User Datagram Protocol
(UDP), a lossy connectionless protocol. TCP is commonly used where all data must be intact (e.g. file
share), whereas UDP is used when retaining all packets is less critical (e.g. video streaming).

Session layer

The session layer is responsible for network coordination between two separate applications in a session.
A session manages the beginning and ending of a one-to-one application connection and synchronization
conflicts. Network File System (NFS) and Server Message Block (SMB) are commonly used protocols
at the session layer.

Presentation layer

The presentation layer is primarily concerned with the syntax of the data itself for applications to send
and consume. For example, Hypertext Markup Language (HTML), JavaScipt Object Notation (JSON),
and Comma Separated Values (CSV) are all modeling languages to describe the structure of data at the
presentation layer.

Application layer

The application layer is concerned with the specific type of application itself and its standardized
communication methods. For example, browsers can communicate using HyperText Transfer Protocol
Secure (HTTPS), and HTTP and email clients can communicate using POP3 (Post Office Protocol
version 3) and SMTP (Simple Mail Transfer Protocol).

https://aws.amazon.com/vpc/ipv6/
https://aws.amazon.com/compare/the-difference-between-nfs-smb/
https://aws.amazon.com/compare/the-difference-between-html-and-xml/
https://aws.amazon.com/documentdb/what-is-json/

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 41

EXPERIMENT-12

Aim:- Creating and manipulation of Database table using SQL in MS Access.

Creating and manipulating database tables using SQL in Microsoft Access involves using SQL

statements.

Creating a Table

To create a table, you can use the CREATE TABLE statement.

CREATE TABLE TableName (

 Column1 datatype,

 Column2 datatype,

 ...

 ColumnN datatype

);

Example

CREATE TABLE Employees (

 EmployeeID INT PRIMARY KEY,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

 BirthDate DATE,

 Salary DECIMAL(10, 2)

);

Adding Data to a Table

To insert data into a table, you use the INSERT INTO statement:

INSERT INTO TableName (Column1, Column2, ..., ColumnN)

VALUES (Value1, Value2, ..., ValueN);

Example:

INSERT INTO Employees (EmployeeID, FirstName, LastName, BirthDate, Salary)

VALUES (1, 'John', 'Doe', '1990-01-01', 50000.00);

Updating Data in a Table:

To update existing data in a table, use the UPDATE statement:

UPDATE TableName

SET Column1 = Value1, Column2 = Value2, ...

WHERE Condition;

Example:

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 42

UPDATE Employees

SET Salary = 55000.00

WHERE EmployeeID = 1;

Deleting Data from a Table:

To delete data from a table, use the DELETE FROM statement:

DELETE FROM TableName

WHERE Condition;

Example:

DELETE FROM Employees

WHERE EmployeeID = 1;

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 43

SOME ADDITIONAL PROGRAMS

WAP to illustrate Function overloading

Function overloading:- Function overloading is a feature of object-oriented programming where two or

more functions can have the same name but different parameters. When a function name is overloaded

with different jobs it is called Function Overloading. In Function Overloading <Function= name should

be the same and the arguments should be different. Function overloading can be considered as an

example of a polymorphism feature in C++.

If multiple functions having same name but parameters of the functions should be different is known as

Function Overloading.

If we have to perform only one operation and having same name of the functions increases the

readability of the program.

Suppose you have to perform addition of the given numbers but there can be any number of arguments,

if you write the function such as a(int,int) for two parameters, and b(int,int,int) for three parameters then

it may be difficult for you to understand the behavior of the function because its name differs.

Program

#include <iostream>

class Overloader {

public:

 // Function to add two integers

 int add(int a, int b) {

 return a + b;

 }

 // Function to add three integers

 int add(int a, int b, int c) {

 return a + b + c;

 }

 // Function to concatenate two strings

 std::string concatenate(std::string str1, std::string str2) {

 return str1 + str2;

 }

https://www.geeksforgeeks.org/polymorphism-in-c/

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 44

 // Function to add two double numbers

 double add(double x, double y) {

 return x + y;

 }

};

int main() {

 Overloader overloader;

 // Testing the different overloaded functions

 int sum1 = overloader.add(5, 10);

 int sum2 = overloader.add(5, 10, 15);

 std::string resultStr = overloader.concatenate("Hello, ", "world!");

 double sumDouble = overloader.add(3.5, 2.5);

 // Displaying the results

 std::cout << "Sum (int): " << sum1 << std::endl;

 std::cout << "Sum (int): " << sum2 << std::endl;

 std::cout << "Concatenation (string): " << resultStr << std::endl;

 std::cout << "Sum (double): " << sumDouble << std::endl;

 return 0;

}

Output

Sum (int): 15

Sum (int): 30

Concatenation (string): Hello, world!

Sum (double): 6

In this example

The Overloader class has multiple functions named add and concatenate with different parameter lists

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 45

The add function is overloaded for integers and doubles, and the concatenate function is overloaded for

strings

In the main function, the different overloaded functions are called and their results are displayed.

Viva Voce Questions-

• What is function overloading?

• What are the advantages of function overloading?

• What happens if there are two overloaded functions with the same signature?

• How does function overloading differ from function overriding in C++?

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 46

WAP to illustrate Derived classes & Inheritance

Inheritance:- Inheritance is a feature or a process in which, new classes are created from the existing

classes. The new class created is called <derived class= or <child class= and the existing class is known as

the <base class= or <parent class=. The derived class now is said to be inherited from the base class.

When we say derived class inherits the base class, it means, the derived class inherits all the properties of

the base class, without changing the properties of base class and may add new features to its own. These

new features in the derived class will not affect the base class. The derived class is the specialized class

for the base class.

• Sub Class: The class that inherits properties from another class is called Subclass or Derived

Class.

• Super Class: The class whose properties are inherited by a subclass is called Base Class or

Superclass

Program

#include <iostream>

#include <string>

// Base class

class Animal {

protected:

 std::string name;

public:

 // Constructor

 Animal(const std::string& n) : name(n) {}

 // Member function

 void eat() const {

 std::cout << name << " is eating." << std::endl;

 }

 // Virtual function to be overridden by derived classes

 virtual void sound() const {

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 47

 std::cout << "Animal makes a sound." << std::endl;

 }

};

// Derived class 1

class Dog : public Animal {

public:

 // Constructor

 Dog(const std::string& n) : Animal(n) {}

 // Override the sound function

 void sound() const override {

 std::cout << name << " barks: Woof! Woof!" << std::endl;

 }

 // New member function specific to Dog

 void fetch() const {

 std::cout << name << " is fetching the ball." << std::endl;

 }

};

// Derived class 2

class Cat : public Animal {

public:

 // Constructor

 Cat(const std::string& n) : Animal(n) {}

 // Override the sound function

 void sound() const override {

 std::cout << name << " meows: Meow! Meow!" << std::endl;

 }

 // New member function specific to Cat

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 48

 void climb() const {

 std::cout << name << " is climbing a tree." << std::endl;

 }

};

int main() {

 // Creating objects of derived classes

 Dog myDog("Buddy");

 Cat myCat("Whiskers");

 // Calling member functions of the base class

 myDog.eat();

 myDog.sound();

 myCat.eat();

 myCat.sound();

 // Calling member functions specific to derived classes

 myDog.fetch();

 myCat.climb();

 return 0;

}

Output

Buddy is eating.

Buddy barks: Woof! Woof!

Whiskers is eating.

Whiskers meows: Meow! Meow!

Buddy is fetching the ball.

Whiskers is climbing a tree.

In this example

Animal is the base class with a common eat function and a virtual function sound

Dog and Cat are derived classes that inherit from the Animal base class.

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 49

The sound function is overridden in both Dog and Cat classes.

Each derived class also has a new member function (fetch for Dog and climb for Cat).

Viva Voce Questions-

• What is inheritance in C++

• What are the types of inheritance in C++

• What is the access specifier used for inheritance in C++

• Can you provide an example of a real-world scenario where inheritance is useful?

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 50

WAP to insert and delete and element from the Stack

Stack is a linear data structure that follows a particular order in which the operations are performed.

The order may be LIFO (Last In First Out) or FILO(First In Last Out). LIFO implies that the element

that is inserted last, comes out first and FILO implies that the element that is inserted first, comes out

last.

Program

#include <iostream>

#include <stack>

int main() {

 // Create an empty stack

 std::stack<int> myStack;

 // Insert elements into the stack (push)

 myStack.push(10);

 myStack.push(20);

 myStack.push(30);

 // Display the elements in the stack

 std::cout << "Elements in the stack: ";

 while (!myStack.empty()) {

 std::cout << myStack.top() << " ";

 myStack.pop(); // Remove the top element

 }

 std::cout << std::endl;

 // Reinsert elements for further demonstration

 myStack.push(40);

 myStack.push(50);

 // Display the top element without removing it

 if (!myStack.empty()) {

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 51

 std::cout << "Top element in the stack: " << myStack.top() << std::endl;

 } else {

 std::cout << "The stack is empty." << std::endl;

 }

 // Remove the top element from the stack (pop)

 if (!myStack.empty()) {

 myStack.pop();

 std::cout << "Top element removed from the stack." << std::endl;

 } else {

 std::cout << "Cannot pop from an empty stack." << std::endl;

 }

 // Display the updated elements in the stack

 std::cout << "Updated elements in the stack: ";

 while (!myStack.empty()) {

 std::cout << myStack.top() << " ";

 myStack.pop();

 }

 std::cout << std::endl;

 return 0;

}

Output

Elements in the stack: 30 20 10

Top element in the stack: 50

Top element removed from the stack.

Updated elements in the stack: 40

In this program:

• The <stack> header is included to use the std::stack container.

• Elements are inserted into the stack using the push operation.

• The top function is used to access the top element without removing it.

• The pop operation is used to remove the top element from the stack.

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 52

• The program checks for empty stack conditions before attempting to access or remove elements.

Viva Voce Questions-

• What is a stack?

• How can you implement a stack in C++?

• How is dynamic memory allocation related to the stack?

• What is stack overflow?

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 53

WAP to insert and delete and element from the Queue

Queue:- A Queue is defined as a linear data structure that is open at both ends and the operations are

performed in First In First Out (FIFO) order. We define a queue to be a list in which all additions to the

list are made at one end, and all deletions from the list are made at the other end.

Program

#include <iostream>

#include <queue>

int main() {

 // Create an empty queue

 std::queue<int> myQueue;

 // Insert elements into the queue (enqueue)

 myQueue.push(10);

 myQueue.push(20);

 myQueue.push(30);

 // Display the elements in the queue

 std::cout << "Elements in the queue: ";

 while (!myQueue.empty()) {

 std::cout << myQueue.front() << " ";

 myQueue.pop(); // Remove the front element

 }

 std::cout << std::endl;

 // Reinsert elements for further demonstration

 myQueue.push(40);

 myQueue.push(50);

 // Display the front element without removing it

 if (!myQueue.empty()) {

 std::cout << "Front element in the queue: " << myQueue.front() << std::endl;

 } else {

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 54

 std::cout << "The queue is empty." << std::endl;

 }

 // Remove the front element from the queue (dequeue)

 if (!myQueue.empty()) {

 myQueue.pop();

 std::cout << "Front element removed from the queue." << std::endl;

 } else {

 std::cout << "Cannot dequeue from an empty queue." << std::endl;

 }

 // Display the updated elements in the queue

 std::cout << "Updated elements in the queue: ";

 while (!myQueue.empty()) {

 std::cout << myQueue.front() << " ";

 myQueue.pop();

 }

 std::cout << std::endl;

 return 0;

}

Output

Elements in the queue: 10 20 30

Front element in the queue: 40

Front element removed from the queue.

Updated elements in the queue: 50

In this program

The <queue> header is included to use the std::queue container.

Elements are inserted into the queue using the push operation.

The front function is used to access the front element without removing it.

The pop operation is used to remove the front element from the queue.

The program checks for empty queue conditions before attempting to access or remove elements.

Viva Voce Questions-

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 55

• Why is the queue data structure useful in programming?

• How does a priority queue differ from a regular queue?

• Explain the concept of the "front" and "rear" in a queue?

• How can you implement a queue in C++?

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 56

WAP to insert and delete and element from the Linked List

Linked List:- A linked list is the most sought-after data structure when it comes to handling dynamic

data elements. A linked list consists of a data element known as a node. And each node consists of two

fields: one field has data, and in the second field, the node has an address that keeps a reference to the

next node.

Program

#include<bits/stdc++.h>

using namespace std;

struct Node{

 int data;

 struct Node *next;

};

void Insert(struct Node **head,int position,int x)

{

 //cout<<(head)<<" "<<(*head)<<"\n";

 struct Node *p,*q,*newNode;

 newNode=new Node();

 newNode->data=x;

 p=*head;

 if(position==1)

 {

 newNode->next=p;

 //cout<<newNode<<endl;

 *head=newNode;

 return;

 }

 else

 {

 int k=1;

 while(p!=NULL && k<position)

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 57

 {

 k++;

 q=p;

 p=p->next;

 }

 q->next=newNode;

 newNode->next=p;

 }

}

void Delete(struct Node **head,int position)

{

 struct Node *p,*q;

 p=*head;

 //cout<<(head)<<" "<<(*head)<<"\n";

 if(*head==NULL)

 {

 cout<<"List empty!!\n";

 return;

 }

 if(position==1)

 {

 *head=(*head)->next;

 free(p);

 return;

 }

 else

 {

 int k=1;

 while(p!=NULL && k<position)

 {

 k++;

 q=p;

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 58

 p=p->next;

 }

 if(p==NULL)

 {

 cout<<"Position not found!!\n";

 return;

 }

 else

 {

 q->next=p->next;

 delete(p);

 }

 }

}

void Print(struct Node **head)

{

 struct Node *p=*head;

 while(p)

 {

 cout<<p->data<<" ";

 p=p->next;

 }

 cout<<"\n";

}

int main()

{

 struct Node *head=NULL;

 //cout<<head<<"\n";

 Insert(&head,1,5);

 Insert(&head,1,4);

 Insert(&head,3,3);

 Insert(&head,2,2);

 Insert(&head,2,1);

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 59

 Print(&head);

 Delete(&head,1);

 Print(&head);

 Delete(&head,4);

 //Delete(&head,1);

 Print(&head);

 Delete(&head,4);

 Print(&head);

}

Output

4 1 2 5 3

1 2 5 3

1 2 5

Position not found!!

1 2 5

Viva Voce Questions-

• What is a Linked List?

• What is a Singly Linked List?

• What is the difference between an array and a linked list?

• What is a circular linked list?

Write a C++ program to check whether a given number is even or odd

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 60

Program

#include <iostream>

int main() {

 int number;

 // Input

 std::cout << "Enter a number: ";

 std::cin >> number;

 // Check whether the number is even or odd

 if (number % 2 == 0) {

 std::cout << number << " is even." << std::endl;

 } else {

 std::cout << number << " is odd." << std::endl;

 }

 return 0;

}

Output

Enter a number: 2

2 is even.

Enter a number: 5

5 is odd.

Write a C++ program to find whether a given year is a leap year or not

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 61

Program

#include <iostream>

int main() {

 int year;

 // Input

 std::cout << "Enter a year: ";

 std::cin >> year;

 // Check if the year is a leap year

 if ((year % 4 == 0 && year % 100 != 0) || (year % 400 == 0)) {

 std::cout << year << " is a leap year." << std::endl;

 } else {

 std::cout << year << " is not a leap year." << std::endl;

 }

 return 0;

}

Output

Enter a year: 2001

2001 is not a leap year

Enter a year: 2024

2024 is a leap year

Viva Voce Questions-

• What is C++?

C++ is a general-purpose programming language that is an extension of the C programming

language. It supports object-oriented programming features as well.

• What is the difference between C and C++?

C++ is an extension of C with additional features, including classes and objects for object-oriented

programming, function overloading, and templates.

• What is Object-Oriented Programming (OOP)?

Object-Oriented Programming is a programming paradigm that uses objects (instances of classes) to

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 62

organize code. It promotes concepts such as encapsulation, inheritance, and polymorphism.

• What are the basic principles of OOP?

Encapsulation, Inheritance, and Polymorphism, Inheritance, classes and objects.

• Explain the concept of a class in C++.

A class is a blueprint for creating objects. It defines a data structure along with the methods that

operate on that data.

• What is an object in C++?

An object is an instance of a class. It represents a real-world entity and is created from a class.

What is the difference between public, private, and protected access specifiers in a class?

These are access control keywords in C++. Public members are accessible from outside the class,

private members are only accessible within the class, and protected members are accessible within

the class and its derived classes.

• What is function overloading?

Function overloading is the ability to define multiple functions in the same scope with the same

name but different parameters.

• Explain the concept of inheritance in C++.

Inheritance allows a class to inherit properties and behaviors from another class. It supports the

creation of a new class (derived class) using an existing class (base class) as a foundation.

• What is a constructor in C++?

A constructor is a special member function with the same name as the class. It is automatically

called when an object is created and is used to initialize the object's state.

• What is a destructor in C++?

A destructor is a special member function with the same name as the class, preceded by a tilde (~).

It is automatically called when an object goes out of scope and is used to release resources or

perform cleanup.

What is the difference between new and malloc()?

new is an operator in C++ for dynamic memory allocation, while malloc() is a function in C. new

automatically calls constructors, whereas malloc() does not.

• What is the Standard Template Library (STL) in C++?

The STL is a collection of template classes and functions in C++ that provides general-purpose classes

and functions with templates that implement many popular and commonly used algorithms and data

structures like vectors, lists, queues, and

more.

LAKSHMI NARAIAN COLLEGE OF TECHNOLOGY EXCELLENCE, BHOPAL

Page 63

